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Model-driven learning in biomedicine: an example
Theory-driven learning in biomedical research has the potential to unveiling the CAUSALITY
that governs the biological processes. The most successful example is the Hodgkin-Huxley
model for cell excitability



The era of big data and the advent of precision medicine



Data-driven learning in biomedicine
Data-driven learning has the objective to infer correlations among big data, that result from
different modalities and different level of fidelity. Machine learning is a subfield of AI which
uses algorithms to automatically learn insights and recognize patterns from data, applying
that learning to make increasingly better decisions



Supervised vs unsupervised learning 
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Integration of ML and multiscale modelling
ML learning alone infers correlations without imposing any law of physics. Multiscale
simulations indeed seek to infer the behavior of the system, if we have access to massive
amounts of data, while the governing equations/parameters are not precisely known.
Their integration is crucial to build physics-driven knowledge of the biological processes.

[Alber at al., 2019, Dig Med]



Integration of ML and multiscale modelling: a workflow



[Nelson et al., 2005, PNAS]

[Discher et al., 2005, Science]

Cells feel their environment through physical forces



Mechano-biology of tumour cells in-vitro
Understanding how mechanical and physical cues influence the invasive strategies of a
malignant tissue is crucial for curing many cancers. Numerous in-vitro system models have
been proposed to capture the complex features of cancer cells (e.g. migration,
proliferation, aggregation and resistance to therapies) , but also the dynamic and evolving
feedbacks between cancer and their surroundings, i.e. mechano-reciprocity (Friedl).

[Weaver at al 2007, Friedl et al 2009]
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Some clinical facts about Glioblastoma multiforme (GBM)
GBM is a multifactorial disease representing the most common type of primary malignant

brain tumors, being charcterized by high invasiveness and complex clinical phenotypes.



The open problem to identify the resection margin from MRI
The magnetic resonance imaging (MRI) is based on signals from hydrogen 1H nuclei (i.e.
protons) under pulsed sequences of a strong magnetic field.



The GLIOMATH project
I will present some research activities funded by the Associazione Italiana
per la Ricerca sul Cancro (AIRC) through the grant MFAG 17412.
The GLIOMATH project concerned a multi-disciplinary collaboration between
mathematicians, oncological biologists and medical doctors with the aim to
translate the patient-specific modeling of glioblastoma into clinics.
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Scientific objectives of the GLIOMATH project
The scientific objectives of the project are:
- to develop a novel mathematical framework for modelling GBM invasion 

learning  its mechano-biological characteristics.;
- to investigate in-vitro the impact of chemo-mechanical cues on the growth 

of glioblastoma (GBM) cell lines (@ IFOM);
- To perform a clinical study, collecting a database of neuroimaging data (e.g.

about pre-operative clinical screening, surgical procedures, and post-
operative follow-up) on 30 patients with Intracranial GBM (@ Besta);

- To build a computational platform for the patient-specific modeling of 
GBM growth and recursion, its response to surgery and adjuvant therapies.

For this purpose, the mathematical activities involved several young researchers with
complementary skills ranging from numerical analysis to statistics and image reconstruction.
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Experiments @IFOM 



Stress-driven proliferation of GBM cells in vitro
To understand the long-term effects of prolonged mechanical stimulation on the morphology and 
proliferation capacity of glioblastoma cells, we cultured T98G cells with Dextran-containing or 
hypotonic medium for 6 days.. 

[Pozzi et al 2019, MBE]



Effects of osmotic pressure on cell cycle 
We highlight that prolonged mechanical stimuli impinge on the growth properties of glioblastoma
cells on specific cell cycle phases, ultimately limiting the proliferative capacity of tumor cells.

[Pozzi et al 2019, MBE]



Effects of osmotic pressure on cell morphology 
Through energetic considerations we suggested a plausible explanation of the morphology 
crossover between the two solutions, based on a competition between the isotropic response and 
the splay contribution given by the cytoskeletal fibers.

[Pozzi et al 2019, MBE]



3D in-vitro systems models:  multicellular tumour spheroids
Since the pioneering experiments of Sutherland and co-workers, MCTs have been used as 3D 
system models to study the resistance to radiation therapies, displaying similar features in 
term of growth properties and structural heterogeneity as avascular tumoral nodules.

[Hoarau at al 2018, Espinosa et 2012, Montel et al 2009,2011]



From 2D to 3D migration: budding of GBM cells in-vitro
We seeded Glioblastoma cells (UG-87) in a Petri dish within a nutrient-rich medium,
observing a spontaneous aggregation into clusters.

diameter: 8.6 cm; thickness: 0.17 cm

43.100 cells/cm2

5% CO2 modified Dulbecco medium

Which are the mechano-biological 
cues triggering tumour budding?



From 2D to 3D migration: budding of tumour cells in-vitro
We employ our diffuse interface model with linear growth and reaction terms:

with: 

The nonequilibrium tumour growth is dominated by the following dimensionless
parameters:

We expect that budding occurs if D=O(1) with a coarsening dynamics influenced by the
diffusive nutrient length ln and the nutrient growth rate .



Numerical FE simulations
We perfomed FE simulations using the following ensemble of initial conditions:

[Agosti Marchesi Scita  PC, under review]

Our numerical algoritm has been implemented in FreeFem+++ . We used linear elements in 
space and a backward Euler scheme in time. We partitioned the dish domain into 104:686 
triangular subsets and 52:733 nodes. The time step is chosen to be small compared to the 
characteristic time of phase separation in the model.



Numerical simulations versus experiments



Tumour budding is a self-similar coarsening phenomenon
We study the far-from-equilibrium kinetics of phase ordering of tumour using statistical
mechanics tools to highlight its universal features. The tumour clusters become a self-similar
ensemble at late times, we assume frame-invariance by a single characteristic length L(t), that
grow over time as the different clusters compete to select the equilibrium state.

Number of cluster with size smaller or 
equal to l. 



Clinical study  @BESTA 



The clinical study @Besta
After obtained the approval of the Ethical Committee of IRCCS Besta, we performed a clinical
study on a cohort of 30 patients diagnosed with GBM.
The clinical study concerned the following steps:

- Enrollment: Signed consensus of patients at first diagnosis, later confirmed from bioptic
analysis.

- Pre Surgery: Acquisition of MRI and DTI data

- Surgery: using either fluorescin or neuro-navigation tools. Bioptic results.

- Post Surgery (within 72h) : MRI and, possibly, DTI data depending on the condition of the
patient.

- Therapy: Radiotherapy (RT) and Chemo-therapy (CT) according to the Stupp protocol

- Follow-up: MRI and DRI after 1 month after the end of RT, and every 2 months afterwards.



Summary of the clinical study



chemotaxis

From DTI we make a patient-specific estimation of the local values of T (the tensor of

preferential direction) and D (the oxygen diffusion tensor)

A patient-specific model integrating DTI data

[Agosti et al. IJNLM 2018]



Modelling the effect of therapies

[Agosti et al. ZAMM 2018]



Further model parameters

[Agosti et al. ZAMM 2018]



Step 1: MRI segmentation

[Colombo PC et al. PloSOne 2016]



Step 2: Mesh refining and labelling



Step 3: DTI registration 



Pre-Surgery Post-Surgery

a), b) x-slice MRI;

c) tissue labels from 
segmentation;

e), f) tumor and deformed 
ventricle segmentation.

In some cases we need 
to reconstruct the DTI 

after surgery considering 
the deformation of the 

ventricle

Step 4: Surgical removal and  re-meshing



Step 5: Numerical simulations



Step 6: Learning from simulations and clinical data

Jaccard index J between simulated (A) and experimental (B) tumour mass.
It ranges tipically between 0.45 and 0.66 in 3D simulations of parabolic 
anisotropic model based on DTI (Swanson et al. 2017)



Model-based learning from neuroimaging data
The direct simulation is very expensive from a computational viewpoint, so a trial-and-error
approach to calibrate the model results with the neuroimaging data is unfeasible.
To cut the computational cost, we implemented a model order reduction (MOR) based on the
proper orthogonal decomposition (POD).



Basic idea of Model Order Reduction (MOR)

And we repeat the previous algorithm to derive the ROM basis that we use to derive the
ROM system that we solve by Newton’s method with DEIM interpolation for treating the
nonlinearities

[Agosti, PC, Garcke, Hinze, M2AS, 2021

Now we reason similarly as before but this time we let k vary, in the sense that until this
point, we only endowed the ROM basis of parameter-specific information of the evolution
over time, but we want a basis able to capture the GBM dynamics over the parameters.
In order to build up such a basis, we consider the matrices



Optimization algorithm 



Application 1: growth prediction of a primary GBM



Application 2: recurrence prediction after surgery 



Model and data fusion: a deep learning approach
The MOR reduces the computational complexity compared to the FOM, but the optimization
algorithm may require many iterations to converge, which limits its usage in clinical settings.

Thus, we proposed a deep learning approach to achieve the same accuracy at a fraction of the
computational cost of the ROM.



Neural networks and deep learning: basic concepts



Direct problem: learning the ROM solution



Inverse problem: patient-specific parameter estimation



FOM versus NN solution: estimated volume



FOM versus NN solution: computational effort



Acknowledgements
Collaborators:

Donato Cerrone
Giulia Pozzi MOX, Politecnico di Milano
Davide Riccobelli
Paolo Zunino
Beatrice Grammatica
Andrea Manzoni

Giorgio Scita, Stefano Marchesi IFOM
Francesco Acerbi, Alberto Bizzi IRCSS Besta

Funding
MFAG AIRC Grant, INSERM CancerPhysics
MIUR PRIN 2017 + PRIN 2020 + Dipartimento di Eccellenza 2023-2027
Regione Lombardia, NEWMED project



T cell therapy against cancer:
A predictive diffuse-interface mathematical model 
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The 3R principle in medical research



In-silico modeling for boosting 3R



Adoptive cellular immunotherapy





Clinical collaboration



The chemo-physical fields



Balance equation for the tumour mass



Reaction-diffusion equations for other chemical species



Physical parameters for tumour growth and oxygen diffusion



Reaction-diffusion equations for lymphocytes and chemokines



Physical parameters for immune-system dynamics and therapy



Numerical implementation



Simulation results



Simulation results: tumour and nutrient concentrations



Simulation results: lymphocytes dynamics



Evalutating the efficiency of immunotherapy



Simulation results: the threshold effect on L 



Future developments
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